Inversion of explosive source land seismic data to determine source signature parameters

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks to Retrieve Seismic Source Parameters

The use of supervised neural networks for the estimation of seismic source parameters from SAR interferometric data is presented in this paper. The RNGCHN software allowed the generation of the input-output pairs necessary for the learning phase of the net. After being trained, the net has been tested on real measured data. The obtained results encourage future developments of such an approach.

متن کامل

Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data

S U M M A R Y We decompose a general seismic potency tensor into isotropic tensor, double-couple tensor and compensated linear vector dipole using the eigenvectors and eigenvalues of the full tensor. Two dimensionless parameters are used to quantify the size of the isotropic and compensated linear vector dipole components. The parameters have well-defined finite ranges and are suited for non-li...

متن کامل

Source Separation on Seismic Data

Rights Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Abstract—This artic...

متن کامل

Source inversion of W phase: speeding up seismic tsunami warning

S U M M A R Y W phase is a long period phase arriving before S wave. It can be interpreted as superposition of the fundamental, first, second and third overtones of spheroidal modes or Rayleigh waves and has a group velocity from 4.5 to 9 km s−1 over a period range of 100–1000 s. The amplitude of long period waves better represents the tsunami potential of an earthquake. Because of the fast gro...

متن کامل

Neural Networks to Retrieve Seismic Source Parameters by Sar Interferometry

The use of supervised neural networks for the estimation of seismic source parameters from SAR interferometric data is presented in this paper. The RNGCHN software allowed the generation of the input-output pairs necessary for the learning phase of the net. After being trained, the net has been tested on real measured data. The obtained results encourage future developments of such an approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Prospecting

سال: 2021

ISSN: 0016-8025,1365-2478

DOI: 10.1111/1365-2478.13079